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Fig. 1. This study explored hand gestures for hearables through a gesture elicitation study (GES) under six
conditions (three interaction areas X two device shape types) and conducted gesture recognition experiments
with ear-level gestures that IMU can recognize.

Hearables are highly functional earphone-type wearables; however, existing input methods using stand-alone
hearables are limited in the number of commands, and there is a need to extend device operation through
hand gestures. In previous research on hearables for hand input, user understanding and gesture recognition
systems have been developed. However, in the realm of user understanding, investigation concerning hand
input with hearables remains incomplete, and existing recognition systems have not demonstrated proficiency
in discerning user-defined gestures. In this study, we conducted a gesture elicitation study (GES) assuming
hand input using hearables under six conditions (three interaction areas X two device shapes). Then, we
extracted ear-level gestures that the device’s built-in IMU sensor could recognize from the user-defined
gestures and investigated the recognition performance. The results of sitting experiments showed that the
gesture recognition rate for in-ear devices was 91.0% and that for ear-hook devices was 74.7%.
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1 INTRODUCTION

Hearables are highly functional earphone-type devices with diverse applications, including lifelog-
ging, voice assistance, and audio services, alongside traditional functions like music playback and
communication [25, 49]. Development efforts are underway, and more applications are expected
to be incorporated. Many commercially available hearables are designed for synergistic use with
smartphones. However, the current operational paradigm necessitates physical interaction with
the smartphone’s screen, reducing usability. Consequently, a compelling demand exists for a device
operation method that uses only hearables.

Manipulation techniques for hearables can be categorized into hands-free and hand input methods.
Various hands-free input methods, including voice input [47], silent speech input [12, 34], and head
gesture input [4, 5, 20, 36, 41] methods are useful when hands are otherwise engaged, such as when
managing luggage. Conversely, voice input presents challenges, notably difficulties associated with
speaking in public places, and reduced recognition accuracy in noisy environments. Additionally,
conversational command input, encompassing silent speech input, necessitates the user to articulate
a wake word, a process that becomes cumbersome for frequently used commands [1]. Head gestures,
particularly those involving substantial head movements such as shaking, include the potential
disruption of eye contact. Furthermore, gestures reliant on small head movements, such as jaw
shifting, may risk confusion with everyday movements.

The hand input method necessitates the use of hands; however, it is user-friendly, and the
facilitation of device operation is accompanied by tactile feedback [15]. Moreover, given that gestures
are executed directly toward the device or the user’s own body, this approach minimizes confusion
with routine activities and has the additional benefit of swift input execution. Research on hand
input for hearables encompasses two principal domains: user understanding [8, 16, 24, 30, 45], and
the development of hand input methods [2, 14, 16, 18, 21, 35, 45]. In the realm of user understanding,
gesture elicitation studies (GES) [42] have been undertaken, wherein multiple users have devised
gestures to ascertain an optimal set of gestures. On the other front, efforts have been directed
toward advancing the development of a hand gesture recognition system, leveraging the device’s
integrated sensors.

In their investigation of GES, Chen et al.[8] revealed user-defined gestures centered around the
ear periphery as the designated interaction region. Similarly, Rateau et al. [24] revealed user-defined
gestures in the context of wearing both a smartwatch and earphones. However, in their study,
there were no constraints on the types of gestures that could be defined, and no specific survey
was conducted exclusively for hearables. Consequently, their study exhibits the following two
characteristics:

No interaction area restrictions
Previous studies have defined aerial gestures, which do not involve physical contact with
the device or body. The concept of aerial gesture recognition has been explored [21, 35].
However, implementing these methods necessitates installing a camera or an outward-facing
infrared sensor, rendering it a challenging prospect for swift integration into commercial
hearables. In contrast, touch-based gesture recognition has been proposed, including methods
using microphones or 9-axis sensors [2, 45]. Furthermore, some products available on the
market employ gesture input by measuring vibrations generated through tapping around the
tragus with an acceleration sensor [33]. These studies and products highlight the current
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limitations, primarily involving surface tapping and swiping as the predominant gestures. As
technology advances, the scope of available gestures and interaction areas is anticipated to
expand. Consequently, there is a need to systematically identify and classify gesture sets that
align with various input technologies, particularly by exploring user-defined gestures under
defined interaction area constraints.
No GES has been exclusively conducted for the singular use of hearables.

Previous studies have often considered users either without any device [8] or simultaneously
wearing a smartwatch [24]. By contrast, our study focuses on a scenario where the hearables
operate independently without utilizing commands from another device. Consequently, it
becomes important to investigate user-defined gestures that are suitable for scenarios where
the user is only wearing the hearables. Moreover, the contemporary market has an array of
hearables characterized by diverse shapes and sizes, each featuring distinct touch areas and
points. The implications of these variations on user-defined gestures remain unclear.

Studies exploring hand input for hearables have proposed various methods utilizing infrared
sensors [14], IMU sensors [2], and microphones [45]. Many commercial products now include
inertial measurement units (IMUs) for spatial audio reproduction, which have also been used for
motion tracking and user activity recognition [6, 22, 26, 41]. Consequently, harnessing IMUs for
hand gesture recognition is efficient, especially for hearables with limited space. However, existing
research [2] has not evaluated systems based on user-defined gestures and has conducted limited
and preliminary experiments.

Our study focuses on scenarios where users exclusively wear hearables. Fig. 1 provides a concise
summary of our study. We conducted a GES under six conditions with different interaction area
restrictions (no-restriction, touch, and ear-touch) and device shapes (in-ear and ear-hook). We then
introduced a hand gesture recognition method using the IMU sensor embedded in the hearables. The
evaluation of its recognition performance was based on ear-level gestures derived from user-defined
gestures obtained in our GES. The contributions of our research are outlined as follows:

e We conducted a GES involving 19 participants, assuming hand input using hearables. This
study unveiled the impact of interaction area restrictions and differences in device shapes on
user-defined gestures.

e We proposed a hand gesture recognition system utilizing an IMU sensor integrated into
hearables. In an evaluative experiment, we selected ear-level gestures from the user-defined
gesture sets to assess the recognition performance of our system. The results of the sitting
condition experiment demonstrated a gesture recognition rate of 91.0% for in-ear devices (nine
types of gestures) and 74.7% for ear-hook devices (six types of gestures) among 10 participants.
Additionally, in the walking condition experiment, there was a gesture recognition rate of
79.6% for in-ear devices and 58.0% for ear-hook devices among five participants.

This study offers a comprehensive understanding of hand input for hearables, predicts diversification
in input areas and device shapes, and contributes valuable insights to the design of future hearables.
Furthermore, we demonstrate a highly compatible gesture recognition method tailored for hearables.

In this paper, Section 2 describes related works, Section 3 describes the GES for hearable input,
Section 4 describes gesture recognition experiments using an IMU, Section 5 discusses the overall
study, and Section 6 summarizes the study.

2 RELATED WORK
2.1 Elicitation Study for Defining Gesture Sets

In the context of gesture recognition experiments, the determination of gestures involves two
distinct approaches: one utilizing gesture sets formulated by researchers and the other employing
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sets derived from user-defined gestures generated through a GES. Wobbrock et al. [44] defined
gesture sets for surface computing. Their methodology involved conducting a GES in which
researchers assigned tasks to participants, who then devised corresponding gestures. In a related
study, Morris et al. [23] found that the gesture set defined through GES proved to be more intuitive
than the one defined solely by researchers. GES, a versatile tool, has been employed across various
body parts, encompassing the face [19], foot [10], hand [7, 29], head [48], and even the skin [43].
Additionally, GES has been implemented using a diverse array of devices, including televisions [37],
mobile devices [27], head-mounted displays [28], smartwatches [11, 17], smart rings [11], hats [9],
and masks [46].

Regarding GES related to ear interactions, Chen et al. [8] conducted a comprehensive GES
centered around the ear, offering an in-depth analysis and discussion on user-defined gestures in
the context of ear-based interactions. However, in their study, participants were not constrained
in defining gestures, and they were not wearing earphone-type devices. While advantageous for
investigating pure ear interaction, this approach does not align with the development of gesture
recognition technology specifically tailored for hearables, where available interaction areas are
expected to gradually expand. Moreover, when envisioning input for hearables, it is logical to
consider input via the device itself. Rateau et al. [24] conducted a GES involving users wearing
both earphones and a smartwatch. However, their study, similar to Chen et al’’s, did not exclusively
focus on hearables, nor did it impose restrictions on the interaction area. In addressing this gap, our
study emphasizes the necessity of operating multifunctional hearables with the devices themselves,
conducting a GES specifically on users wearing only hearables. Furthermore, our study offers
valuable insights into the incremental development of hearables under conditions where the
interaction area is limited or the device shape varies.

2.2 Hand Input Method for Hearables

Manabe et al. [18] demonstrated that commercially available headphones could be augmented with
a simple circuit to recognize taps. Roman et al. [16] proposed a touch input system utilizing an
ear-hook device equipped with a capacitive sensor, while Kikuchi et al. [14] proposed a system to
recognize ear deformation gestures using a reflective sensor attached to the rear of the earphone.
Additionally, Xiu et al. [45] proposed a system capturing the sound generated by swiping gestures
on the cheek or ear using the device’s built-in microphone. In the realm of commercial products,
SONY’s LinkBuds [33] can recognize vibrations during tapping around the tragus, facilitated by an
acceleration sensor integrated for device input.

In aerial gestures, Metzger et al. [21] proposed an aerial gesture recognition system with an
equipped outward-facing infrared sensor. Tamaki et al. [35] advanced an in-air gesture input
system on an earphone-type device equipped with a camera. The methods in these studies requiring
additional sensors have the limitation that they are not available in commercially available hearables.
Gesture recognition using microphones has found implementation in commercial devices [45].
Nevertheless, there are inherent limitations associated with this approach, such as certain gestures
becoming impractical when wearing a mask. Additionally, challenges arise in terms of diminished
gesture extraction and recognition rates in noisy environments.

In our study, we present a gesture recognition method utilizing an IMU, a component already
integrated into numerous commercial hearables. This choice eliminates significant limitations
concerning implementation costs. Moreover, the IMU offers distinct advantages, notably the absence
of recognition rate degradation in noisy environments. Khaled et al. [2] explored hand gesture
recognition using IMU sensors. Nevertheless, their study did not investigate user-defined gestures,
and the experimental scale (N = 4 for in-ear type devices) remains preliminary. In contrast, our
study endeavors to assess the recognition rate of a gesture set derived from a gesture elicitation
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study (GES) across two device types (in-ear and ear-hook) with a more extensive participant group
(N = 10). This expansion enables a more comprehensive evaluation of IMU-based hand gesture
recognition systems for hearables. Importantly, it contributes to the exploration of user-centered
gestures and widens the spectrum of devices under consideration.

3 GESTURE ELICITATION STUDY FOR INPUT TO HEARABLES
We conducted the GES to address the following three research questions:

RQ1 What gestures do users prefer as input to hearables?

RQ2 How do interaction area restrictions and device shape differences affect user-defined
gestures?

RQ3 What are the similarities and differences with previous studies on hearables and ears?

In this experiment, we endeavored to address the aforementioned research questions by soliciting
users to define gestures for the same set of tasks across a total of six conditions (three interaction
areas X two device shapes). The interaction area conditions include no-restriction, touch, and
ear-touch, with reference to established gesture input methods for hearables. The no-restriction
condition permits users to define gestures, such as hovering and touching around the ear, assuming
the gestures are recognizable by existing methods utilizing a camera, microphone, IMU, or infrared
sensor [2, 14, 21, 35, 45]. In the touch condition, the specified gesture involves a fingertip touch to
either the ear or the surrounding area, assuming the gestures are recognizable by existing methods
utilizing a microphone, IMU, or infrared sensor [2, 14, 45]. The ear-touch condition requires that
the gesture induce device movement, assuming the gestures are recognizable by existing methods
using an IMU and infrared sensor [2, 14]. Additionally, touch gestures directed to the device can be
defined for all conditions. Taking into account the prevalence of commercial products and available
models, we opted for the two most common device shapes: in-ear and ear-hook types, as depicted
in Fig. 1.

3.1 Experiment Summary

3.1.1 Participants and Experimental Environment. Nineteen experimental participants (male: 11,
female: 8) were recruited and surveyed for user-defined gestures. Their ages ranged from 21 to 54
years (average 25.8 years). All participants were right-handed, and sixteen of them used earphones
at least once a week. Nine of them had experience with operations on the device itself, such
as tapping on the device, and two of them usually used operations using the device itself. The
experiment took one to two hours for each participant, and we paid approximately 20 US dollars as
a reward. We conducted the experiments in an open laboratory environment and used AirPods Pro
(Apple) for in-ear type devices and HA-NP35TBK (Victor) for ear-hook devices. This experiment
was approved by the ethical board at the author’s institution and informed consent was obtained
from the participants.

3.1.2  Tasks. The tasks are enumerated in Table 1 and organized into four distinct groups: nav-
igation, music player, phone, and application. The three groups (navigation, music player, and
phone) align with those primarily surveyed in related study [8]. Additionally, we introduced an
applications group to encompass tasks related to activating or deactivating specific functions, such
as voice assistants or voice memos, which are anticipated for use with hearables [24]. The total
number of tasks across all groups was 32.

3.1.3  Procedure. To enhance participants’ comprehension of the functionality associated with
each task, we provided them with an opportunity to observe the control screens while executing
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Table 1. List of task groups.

Task Group Task

Scroll Right, Scroll Left, Scroll Up, Scroll Down, Zoom In, Zoom Out, Maximize /

Navigation Minimize, Go to Home Screen, Next App, Previous App, Forward, Back

Music Player Play / Stop, Volume Up, Volume Down, Next Song, Previous Song

Phone Answer / Hang up, Ignore Call, Make a Call, Microphone on / off, Speaker on / off
L Voice Assistant, Voice Memo on / off, Calendar on / off,
Application . . .
Health Tracking on / off, Notifications on / off
Table 2. Taxonomy of gestures.
Gesture Mapping
Metaphoric Gesture is a metaphor of another object.
Nature Physical Gesture acts physically on object.
Symbolic Gesture visually depicts a symbol.
Abstract Gesture Mapping is arbitrary.
Context In-context Gesture requires specific context.
*' No-context Gesture does not require specific context.
Flo Continuous Action occurs during the gesture.
w Discrete Action occurs after the gesture completion.
Physical Characteristics
Device-level Gesture involves contact with the device.
Locale Ear-level Gesture involves contact with the ear.
Body-level Gesture involves contact with the upper body ex-
cept ears.
Mid-air-level Gesture occurs in the air with no physical contact.
Complexit Simple Gesture consists of a single gesture.
P Compound Gestures can be decomposed into simple gestures.
Static Pose Hand pose is held in only one locale.
Static Pose and Path Hand pose is held as hand moves.
Form Dynamic Pose Hand pose changes in one location.
Dynamic Pose and Path  Hand pose changes as hand moves.
Deformation Hand pose makes the ear deformation.

navigation, music, and phone tasks. Additionally, we explained the specific control outcomes corre-
sponding to each task. In the case of the application group, we verbally explained the application
content. Following this, we outlined the rules for defining gestures, which were as follows:

e The same gesture cannot be assigned to the same task group.

o Gestures separated by“/” in Table 1 (e.g., maximize/minimize) can be assigned to the same
gesture because they are state-switching tasks.

e Gestures can be changed at any time during the experiment.

e The same gesture can be assigned to different tasks with the right and left hands.

o Gestures performed with both hands can be defined.

Subsequent to clarifying the rules, we explained the constraints associated with the gesture defini-
tion location. Concerning aerial and body gestures, it was emphasized that if the gesture definition

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. MHCI, Article 258. Publication date: September 2024.



Exploring User-Defined Gestures as Input for Hearables and Recognizing Ear-Level Gestures with IMUs 258:7

position is excessively distant from the hearables, the envisioned system in this study may face chal-
lenges in recognizing the gesture. Consequently, in the case of defining aerial gestures, participants
were instructed that the hearables sense their movements, and they were guided to perform gestures
directed toward the device. However, specific distance instructions were intentionally omitted.
Regarding the definition of body gestures, excluding the ear, the designated gesture definition
location was confined to the head, neck, and chest areas. After the explanations, each participant
devised gestures for each of the tasks indicated in Table 1. During the experiment, video recording
was made, and the hand combination used by the experimenter (right hand, left hand, or both
hands), the location, type (e.g., tap or swipe), direction, and number of times (e.g., one tap) the
gesture was performed were recorded in text format. For example, “Tap once on the driver part of
the device with the right hand”or “Swipe once up on the cheek with the left hand” were recorded.
The location and type of gesture were updated each time the subject devised a new gesture.

3.2 Taxonomy of Gestures

With 19 participants, 32 tasks, 3 conditions, and 2 devices, a total of 19 X 32 X 3 X 2 = 3648 gestures
were made. This section summarizes the taxonomy of gestures. The entire taxonomy adopted from
previous studies [8, 27, 38, 44] is shown in Table 2. In this experiment, the codebook model [40] was
used to classify the elicited gestures. Gesture mapping describes the process of mapping gestures
to various tasks, including nature, context, and flow. Conversely, physical features capture the
characteristics of the gesture itself, such as locale, complexity, and form.

The nature dimension reflects the different levels of meaning contained in the gesture [8]. A
figurative gesture acts on, with, or like something else. In other words, it is a metaphor for another
physical object, such as tapping an imaginary button. A physical gesture acts on the device itself. A
symbolic gesture visually depicts a symbol. For example, pointing right in the air to “forward” the
screen controls or drawing a heart on the cheek to turn on/off the health tracking function. Finally,
abstract gesture mapping is arbitrary, for example, tapping the device to stop the music or tapping
the right earlobe in the Next App.

The context dimension indicates whether the gesture should be performed independently or
within a specific context. For example, swiping the helix up when turning up the volume on music
playback is an in-context gesture, whereas tapping the earpiece twice to answer the phone is a
no-context gesture.

The flow dimension indicates whether the gesture action on the object occurs simultaneously
with or after the gesture is performed. A gesture is considered a discrete gesture if the action occurs
after the gesture is performed, such as tapping an ear to select an object. A gesture is considered
continuous if a task and the gesture are performed simultaneously, such as scrolling the screen
while swiping in the air.

The locale dimension, classified with reference to the previous study [8, 38], represents the
gesture’s location in relation to the ear. In this study, an additional category “Device-level” was
added because a device is worn on the ear. Considering the interaction area, we classified the
devices into four levels: device, ear, body, and mid-air. The touch condition is restricted in that
mid-air-level cannot be defined as an interaction area, and the ear-touch condition is restricted in
that mid-air-level and body-level cannot be defined as an interaction area.

The complexity dimension indicates whether the gesture is simple or complex. For example, an
earlobe pinching gesture is simpler than an earlobe pulling (pinch + pull) gesture.

The form dimension indicates the movement of the hand when the gesture is made. A static
pose is a hand pose that stays in one place, such as covering the ear with the hand. A static pose
and path are hand postures that remain the same (fingers do not move) even if the hand position
changes, such as swiping through the air with the index finger. The dynamic pose changes only
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Fig. 3. Detailed definition ratio for each local dimension.

the hand pose, such as opening the palm and moving it away from the ear, but the hand position
remains the same. Dynamic poses and paths change both the pose and position of the hand, such
as opening the hand while moving it away from the ear. Gestures that transform the ear, such as
folding the ear or pulling the earlobe, are classified as transformational gestures.

Fig. 2 shows the distribution of each dimension and illustrates the breakdown of our classifica-
tions.

Device-Level Gestures. Device-level gestures were categorized by location, as shown in Fig. 3. In
the driver part of the in-ear device, tap and press gestures were specified, constituting a combined
ratio of 69.6%. Within the stem part, pinch and twist gestures were defined, with a total ratio of
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7.7%. Additionally, gestures involving the entire device, such as swiping down from the driver to
the stem, were defined, accounting for a total ratio of 22.7%.

For the driver part of the ear-hook device, tap, press, and swipe gestures were defined, encom-
passing a total ratio of 91.0%. In the top stem part, only swipe gestures were defined, with a total
ratio of 0.9%. In the back stem part, swipe and tap gestures were defined, resulting in a total ratio
of 7.8%. Additionally, a gesture involving covering the entire device with the hand was defined,
constituting a total ratio of 0.3%.

Ear-Level Gestures. Ear-level gestures were categorized by location, as shown in Fig. 3. In the
tragus part, touch and swipe gestures were defined for 26.1%/18.9% for in-ear/ear-hook devices,
respectively. Within the helix part, a broader array of gestures, including swipe, pull, tap, long
press, pinch, and flip, were defined, accounting for 45.8%/40.6%. For the earlobe part, gestures such
as pull, swipe, and pinch were also defined for 17.6%/26.9%. In the central part, swipe and long
press gestures were defined, comprising 0.7%/1.7%. Additionally, a gesture involving covering the
entire ear with the hand was defined, constituting 6.0%/10.2%.

Body-Level Gestures. Body-level gestures were categorized by location, as shown in Fig. 3. In the
forehead part, tap gestures were defined for 2.3%/2.3% for the in-ear/ear-hook device, respectively.
In the eye part, tap and pinch gestures were defined for 2.3%/2.3%. In the nose part, tap gestures
were defined for 1.1%/1.2%. In the cheek part, swipe, tap, and press gestures were defined for
68.8%/68.0%. In the mouse part, tap and swipe gestures were defined for 4.0%/4.1%. In the jaw
part, tap gestures were defined for 2.8%/2.9%. In the neck part, swipe, press, and tap gestures were
defined for 16.5%/16.9%. In the chest part, tap and swipe gestures were defined for 2.3%/2.3%.

Mid-Air-Level Gestures. The types of mid-air-level gestures are shown in Fig. 3. For gestures of
static pose, gestures such as signing for the phone and holding the hand over were defined (11.1%).
For gestures of static pose and path, gestures such as swipe and long press were defined. The ratios
of gestures defined for the seven directions (up, down, approach, recede, forward, back, and other)
were 13.5%, 11.5%, 6.4%, 7.1%, 7.6%, 10.0%, and 2.0%, respectively, for a total of 58.1%. For gestures
of dynamic hand pose, gestures such as pinch-in and pinch-out of the fingertip and opening and
closing of the hand were defined (30.7%).

3.3 Analysis and Discussion

3.3.1 Trends by Interaction Area Conditions. In the nature dimension, there was a trend toward
fewer metaphoric gestures and more abstract gestures as conditions became more restrictive. In
the context dimension, there was a trend toward slightly fewer in-context gestures as conditions
became more narrow, but there were no significant differences in any of the conditions. We found
that the number of gestures that deviate from the context does not increase noticeably just because
the conditions have become more strict. In the flow dimension, there was little difference among
the conditions. In the locale dimension, a considerable proportion of gestures was defined at
the mid-air-level and at the device-level for both device shapes in the no-restriction condition.
Conversely, very few users chose to define gestures for other body parts in this condition. However,
in the touch condition, the ratio of gestures defined for body-level increased to over 20%, as many
gestures initially defined in the air were redirected to other body parts. Notably, cheek and neck
gestures emerged as preferred alternatives. For device-level and ear-level gestures, which could
be defined up to the most restrictive ear-touch condition, there was an observable rise in the
ratio of definitions as the condition became more restrictive. However, the rate of increase was
more pronounced for ear-level gestures than for device-level gestures. This can be attributed to
the higher initial definition rate of device-level gestures, coupled with limitations on the types of
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Fig. 4. AR scores for each task. A: no-restriction condition, B: touch condition, C: ear-touch condition.

gesture actions that could be defined. In the complexity dimension, compound gestures became
more frequent as conditions became more restrictive. In the form dimension, static pose and path
gestures accounted for the highest percentage of unrestricted conditions. This may be due to the
fact that many swiping actions were defined with the air as the virtual screen. Static pose and path
gestures were not defined in the touch and ear touch conditions. The percentage of deformation
gestures and dynamic pose and path gestures was highest in the touch condition.

3.3.2 Trends by Device Shape Conditions. In the nature dimension, ear-hook devices had slightly
more physical and metaphoric gestures. Symbolic and abstract gestures did not differ much, and
there were no major differences between devices in the context and flow dimensions. In the
complexity dimension, there were fewer compound gestures for the ear-hook devices. This is
thought to be due to the fact that the ear-mounted device has a larger driver part and a larger flat
area that can be touched with a finger.

In contrast to in-ear devices, the ratio of gestures directed at the device was notably higher for
ear-hook devices across all interaction area conditions. For instance, while in-ear devices lacked
user-defined swipe gestures in various locations, ear-hook devices featured users defining swipe
gestures in the driver and top/back stem parts. Consequently, the substantial housing size of
ear-hook devices contributed to an increased ratio of definitions on the device body.

3.3.3 Agreement Rate. Fig. 4 shows the agreement rate (AR) [39] for each condition, which is the
evaluation index used to determine the user-defined gesture for each task.

_|P| Pl 1
ARM =55 2\ ) —mrer
P;cP

where P is the set of all proposals for referent r, | P| is the number of the set, and P; is the subsets of
the same proposals from P. The AR is classified into four types: very high agreement (AR > 0.5), high
agreement (0.5 > AR > 0.3), medium agreement (0.3 > AR > 0.1), and low agreement(0.1 > AR).
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The ARs for each condition are summarized in Fig 4. The average, highest, and lowest ARs for
each condition were 0.18/0.42/0.06 (in-ear/no-restriction condition), 0.21/0.54/0.08 (ear-hook/no-
restriction condition), 0.15/0.40/0.05 (in-ear/touch condition), 0.20/0.62/0.05 (open-ear/touch condi-
tion), 0.17/0.55/0.06 (in-ear/ear-touch condition), and 0.20/0.54/0.06 (open-ear/ear-touch condition).
The stop task in the music player group had the highest average score across all conditions, with
an average of 0.50. The health tracking task in the application group had the lowest average score
across all conditions, with an average of 0.07. The ratio distribution of AR scores was as follows:
2.7% (AR > 0.5), 22.5% (0.5 > AR > 0.3), 50.9% (0.3 > AR > 0.1), and 23.9% (0.1 > AR).

To investigate the effect of device shape difference on AR, significance tests were conducted
for each condition. The Shapiro-Wilk test showed a violation of the normality assumption in all
conditions (no-restriction in-ear/ear-hook: p = 0.00025/0.0000078 < .05, touch in-ear/ear-hook: p =
0.00019/0.00015 < .05, ear-touch in-ear/ear-hook: p=0.0000045/p = 0.00027 < .05). The homogeneity
of variance assumption was not violated (F test results: no-restriction p = 0.42, touch p = 0.11,
ear-touch p = 0.43; all > .05). The Wilcoxon rank-sum test revealed significant differences between
devices in the no-restriction (p = 0.0019 < .05) and touch conditions (p = 0.0015 < .05), but not
in the ear-touch condition (p = 0.50 > .05). Additionally, the Friedman test was used to examine
the effect of interaction area restriction for each device shape, revealing no significant differences
(in-ear: p = 0.201, open-ear: p = 0.339; both > .05).

3.4 Finalized User-Defined Gesture

After categorizing similar gestures based on the taxonomy in Section 3.2, the gesture that occurs
most frequently in each task is referred to as the representative gesture. We refer to the collection
of these representative gestures as our user-defined gestures. The user-defined gestures for the
ear-touch condition are listed in Table 3. The user-defined gestures for the no-restriction and touch
conditions are summarized in Appendix A. In Section 4, we select ear-level gestures that can be
recognized by the IMU from user-defined gestures and conduct gesture recognition experiments.

3.5 Design Implications

3.5.1 RQ1: What gestures do users prefer as input to hearables?

The gesture with the highest AR and the most frequent definition was the tap gesture. This gesture
was defined across all task groups except for the application task group in the no-restriction
condition. The ubiquity of this gesture can be attributed to its intuitive nature and the fact that
the tap feature is already a prevalent functionality on many hearables. The preference for tap
gestures has also been confirmed in a study that evaluated the usability of the presented gesture sets,
further reinforcing this finding [45]. Symmetrical or directional tasks, such as zoom in/out or scroll
right/left/up/down, were consistently translated into corresponding symmetrical or directional
gestures, such as pinching in/out and swiping. This trend persisted across all conditions.

3.5.2 RQ2: How do interaction area limitations and device shape differences affect user-defined
Zestures?

The impact of interaction area conditions on user-defined gestures was particularly pronounced
for directional tasks, specifically scroll right/left/up/down (navigation). The average AR for these
tasks exhibited variation: 0.42 (no-restriction condition), 0.18 (touch condition), and 0.21 (ear-touch
condition). Directional tasks tended to be defined in expansive spaces, often involving hand or
finger swiping gestures. Consequently, the no-restriction condition likely witnessed the utilization
of the most versatile aerial definitions for directional tasks. However, when mid-air-level gestures
were not available, gesture definitions were dispersed across devices, ears (primarily tragus and
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Table 3. User-defined gestures for ear-touch conditions. Pairs with different user-defined gestures for different
devices are shown in bold.

Ear-Touch Condition

Task Group Task In-Ear Device [AR] Ear-Hook Device [AR]

Scroll Right/Left Swipe forward/back device Swipe forward/back device
[0.11/0.11] [0.40/0.40]
Scroll Up/Down Swipe up/down device [0.16/0.18]  Swipe up/down device [0.29/0.31]
Zoom In Fold top helix and earlobe Pinch in device [0.25]
o [0.18]

Navigation Zoom Out Pinch out helix [0.17] Pinch out device [0.24]
Maximize Pull up top helix [0.09] Pull up top helix [0.07]
Minimize Pull down earlobe [0.08] Pull down earlobe [0.06]
Go to Home Screen  Tap device [0.17] Tap device [0.27]
Next App Swipe down helix [0.14] Double tap device [0.12]
Previous App Swipe up helix [0.12] Double tap device (left ear)

[0.09]

Forward Swipe back tragus [0.14] Pull back earlobe [0.10]
Back Swipe forward tragus [0.11] Pull forward earlobe [0.11]
Play / Stop Tap device [0.55/0.47] Tap device [0.54/0.54]

Music Player Volume Up/Down  Swipe up/down helix [0.14/0.16] [S()V\I;[/)Oe”] up/down  device
Next Song Double tap device [0.19] Double tap device [0.16]
Previous Song Double tap device (left ear) [0.16] Double tap device (left ear) [0.11]
Answer / Hang up  Tap device [0.33/0.29] Tap device [0.33/0.27]
Ignore Call Long press device [0.33] Long press device [0.22]

Phone Make a Call Swipe back device [0.13] Swipe back device [0.12]
Microphone on/off  Pull down earlobe [0.08/0.09] Pull down earlobe [0.09/0.08]
Speaker on/off Tap device (left ear) [0.14/0.15] Tap device (left ear) [0.12/0.12]
Voice Assistant Long press device [0.13] Long press device [0.16]
Voice Memo Tap device [0.12] Tap device [0.12]

Application  Calendar Swipe up helix [0.08] Swipe down helix [0.10]
Health Tracking Swipe back tragus [0.06] Pull back middle helix [0.06]
Notifications Fold forward ear [0.15] Pull down earlobe [0.09]

helix), and other body parts (mainly cheeks and neck), leading to a markedly lower AR. This implies
a lack of consensus on a specific body part for gesture definition, except for mid-air-level gestures.

Regarding differences in device shape, the AR for the ear-hook device surpassed that for the
in-ear device. This discrepancy can be attributed to the larger device area of ear-hook devices,
prompting more users to opt for defining gestures directly to the devices. Consequently, this choice
diminishes the dispersion of definitions to other areas, encompassing mid-air-level gestures, ear
touches, and interactions with various parts of the device. This observation aligns with the trend
of pairs exhibiting different gestures for each task in Table 3. Most pairs with distinct gestures are
defined as gestures to the ear for in-ear devices and gestures to the device for ear-hook devices.
Conversely, user-defined gestures to the ear were evenly distributed concerning interaction area
and deformation patterns, including tragus, helix, earlobe, and whole ear deformation (ear fold/fold
top helix and earlobe) for in-ear devices. By contrast, for ear-hook devices, gestures were solely
defined for the helix and earlobe.

In the ear-touch condition, identical pairs of user-defined gestures were observed for both device
shapes, including swipe, tap, and long press on the device, along with pulling down the earlobe and
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pulling up the helix. These gestures appear to be universal user-defined actions, demonstrating
independence from device shape. However, further exploration across various forms of hearables is
warranted to validate their universality and applicability.

3.5.3 RQ3: What are the similarities and differences with previous studies on hearables and ears?
In terms of taxonomy comparison, the results for the nature dimension showed the ratio of symbolic
gestures was lower than in the previous study [27, 44]. Symbolic gestures were less common than
in the previous study, possibly because users avoided using symbolic expressions, which require a
certain amount of space because the gestures were performed on small earphone-type devices.

The results regarding the context dimension showed the ratio of in-context gestures was lower
than in the previous study [8]. We surmise this is because users prefer simple gestures to devices
rather than contextual gestures. The results regarding the flow dimension were similar to the
smartphone-based and ear-related GES [8, 27], but differed from surface-related GES [44]. This
suggests that the definition of discrete gestures increases significantly when the object being
focused on is small, such as earphones or smartphones.

For the locale dimension, the distribution of gesture definitions within the ear also varied
significantly. Notably, gestures defined behind the back of the ear, as identified in existing research,
were not observed in this study, possibly for the same reason mentioned above. Shaikh et al. [30]
conducted motion analysis of gestures for body parts above the neck, excluding the ears, and
confirmed the preference for gestures to the cheeks and neck. This same preference trend was
confirmed by the high ratio of cheeks and necks in the ratio of body-level definitions in our results.
The results of the complexity dimension showed a higher ratio of simple gesture definitions than
the ear-based GES [8]. We surmise that this was because users did not need compound gestures as
they were able to define gestures to the device.

In terms of AR comparison, the results showed that tap and swipe gestures on the device had
the highest AR for play/stop and directional tasks, consistent with a GES involving the device
being worn [24]. However, this differs from a GES conducted without the device being worn [8],
indicating that device presence significantly impacts user-defined gestures. The mean AR in this
study was 0.19 (SD = 0.03), aligning closely with related studies [8, 24] (0.21/0.21). These consistent
results suggest that users define gestures with similar intuitiveness for ear-related interactions,
regardless of device shape or wearing status.

4 GESTURE RECOGNITION USING IMUS

We introduce a gesture recognition method employing an IMU incorporated into hearables, ex-
amining the recognition performance of ear-level gestures derived from the user-defined gestures
established through the GES. Our approach utilizes an IMU that harmonizes effectively with
hearables, minimizing implementation costs and optimizing IMU efficiency. In the evaluation
experiment, we conducted a sitting and walking experiment utilizing both in-ear and ear-hook
devices.

4.1 Recognition Systems

Fig. 5 presents a comprehensive recognition system overview. The user wears hearables and
performs ear-level gestures. These gestures cause movements in the device due to ear deformation
and pressure. Since each gesture affects the direction and intensity of the load differently, the IMU
data vary accordingly. We use machine learning to create models that classify these gestures based
on the data differences. Our system employs a k-NN (k-nearest neighbor) algorithm with dynamic
time warping (DTW) as a metric for gesture classification, setting the parameter k to 3. Preliminary
results showed that using only rotation data led to the best recognition performance; therefore, we
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Fig. 5. System overview of gesture recognition system. Fig. 6. In-ear devices and ear-hook de-
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did not use acceleration and gravitational data. To address irrelevant motion data, we capture IMU
data from both ears and compute differences to isolate gesture components. Due to the instability
sampling rates, we employed timestamps and linear interpolation at 30 ms intervals to synchronize
the data from both devices.

4.2 Implementation

In our investigation, gesture recognition experiments were conducted with two distinct device
types: in-ear and ear-hook (Fig. 6). The AirPods Pro (Apple) served as the in-ear device, capable
of capturing 9-axis IMU data. Data collection was facilitated through an Apple device connected
via Bluetooth to the AirPods Pro. Owing to the unavailability of an ear-hook device capable of
acquiring IMU data, we utilized a prototype device housing a 9-axis sensor, BNO005, enclosed in
the HA-NP35TBK case (Victor). The sensor data was transmitted to a laptop (ASUS: ROG FLOW)
through serial communication via an Arduino Uno connected by wire for data collection. Each
gesture was recorded for a duration of 5 s, and the sampling rate for data measurement for both
devices was approximately 30 Hz. The programs for machine learning and data collection on the
laptop side of the ear-hook device were implemented in Python 3.7.

4.3 Evaluation

In this study, we investigated the recognition performance of our system by testing it in sitting and
walking conditions.

4.3.1 Ear-Level Gestures. We selected ear-level gestures from the user-defined gestures determined
in Section 3.4 and investigated the recognition rate. Gesture recognition with IMU sensors, which
we focus on in this study, requires device displacement. Ear-level and device-level gestures cause
this displacement. Certain commercial devices are equipped with built-in pressure-sensitive sensors
for recognizing device-level gestures. Moreover, gestures presently unrecognizable, such as swipe
forward/backward on devices, are anticipated to become recognizable in the near future through
the built-in sensors. Consequently, our study concentrates on the recognition of ear-level gestures,
specifically those expected to be recognized by IMU sensors. Fig. 7 shows a compilation of ear-level
gestures. There were nine types of ear-level gestures identified for in-ear devices and six types for
ear-hook devices.

4.3.2  Data Collection. In this procedure, 10 participants participated in a sitting experiment using
both in-ear and ear-hook devices. Five participants participated in experiments for both devices,
while the remaining participants were distinct, resulting in a total of 15 participants (male: 10,
female: 5, average age: 26.8 years). Twelve out of the 15 participants were also involved in the
GES. Five participants, three of whom were participants in the sitting experiment and two new
participants, participated in the walking experiment (male: 3, female: 2, average age: 29.4 years). The
duration of the experiment for each device was approximately one hour, with participants receiving
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Fig. 7. Ear-level gestures for each device type.

a reward of approximately 10 US dollars. All participants in the experiment were right-handed,
and 14 of them used earphones at least once a week. This experiment was approved by the ethical
board at the author’s institution, and informed consent was obtained from the participants.

Initially, we provided participants with an explanation of the gestures. Subsequently, the exper-
imenter guided the participant through a brief practice phase for each gesture to confirm their
ability to perform it accurately. Following this, participants were instructed to execute the gestures
displayed on the screen, and sensor data were recorded during the gestures. The sequence of
gestures performed was randomized, and 12 measurement rounds were undertaken, involving the
attachment and detachment of the device for each round. For the walking experiment, data were
collected as participants executed gestures while walking freely within an approximate space of
3m X 3m.

4.3.3  Results. In this study, we first conducted preliminary system design experiments comparing
recognition performance within a combination of data or multiple training models. We then
examined the recognition performance of both per-user and general models in the sitting experiment,
as well as the performance of the per-user model in the walking experiment.

Data Selection. The 9-axis inertial sensor measures acceleration, rotation, and gravitational
acceleration, each offering unique motion characteristics. We explored how different data types and
their combinations affect gesture recognition rates. Training data were obtained through a sitting
experiment with the in-ear device to construct individualized gesture classification models for
each participant. Test and training data sets are separated, coupled with a 12-leave-one-round-out
cross-validation. Fig. 8A revealed that rotation exhibited the highest recognition rate, averaging
91.03%. Hence, rotation was chosen as the data pattern for this study.

Model Selection. We compared various machine learning models to determine the best performer
for our system. Our investigation encompassed the evaluation of recognition rates for DTW-kKNN,
conventional machine learning algorithms (SVM: support vector machine, RF: random forest, k-
NN, MLP: multilayer perceptron, GB: gradient boosting) utilizing basic statistical features (mean,
variance, standard deviation, median, maximum, minimum, root-mean-square), and deep learning
(DNN: deep neural network) applied to raw sensor data. The learning method is the same as in
the previous paragraph. The outcomes depicted in Fig. 8B revealed that DTW-KNN exhibited the
highest recognition rate, averaging 91.0%. Hence, DTW-KNN was chosen as the machine learning
model for this study.
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Recognition Performance of Per-User Model. We provide a more detailed breakdown of the recog-
nition rates for per-user models using DTW-kNN, shown in Fig. 9. The recognition rates per user
are displayed for each device. For in-ear devices, recognition rates ranged from 98.1% (highest,
participant P1) to 78.7% (lowest, participant P4). For ear-hook devices, rates varied from 94.4%
(highest, participant P3) to 48.4% (lowest, participant P12). We conducted statistical tests to compare
recognition rates between devices. The Shapiro-Wilk test showed no normality violation for in-ear
and ear-hook device accuracies (p = 0.117 and p = 0.879, respectively, both > .05). However, the F
test indicated unequal variances (p = 0.00213 < .05), leading us to perform a Welch’s t-test, which
revealed a significant difference between the devices (p = 0.00353 < .05). Fig. 10 shows the confusion
matrix, with precision percentages for each gesture. The highest recognized gesture for in-ear
devices was “pull up top helix” (97.9%), and for ear-hook devices, it was “pull forward earlobe”
(86.4%). The lowest recognized gestures were “pinch out helix” (80.3%) for in-ear and “pull back
middle helix” (67.4%) for ear-hook devices.

Recognition Performance of General Model. The general model, which doesn’t require initial user
data, offers usability benefits over the per-user model if the recognition rate is acceptable. We
evaluated the recognition rate using leave-one-user-out cross-validation, where each user’s data is
omitted from training. Fig. 11 shows the recognition rates: 64.7% for in-ear devices and 47.2% for
ear-hook devices. These rates are lower than those of the per-user model. This is likely caused by
differences in gesture execution and device fit. Future work will focus on improving the general
model’s performance by collecting more gesture data or using transfer learning techniques.

Recognition Performance of Walking Experiment. We investigated the recognition rates for walk-
ing data and assessed the effect of the motion component removal algorithm. Fig. 12 shows the
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Fig. 12. Recognition rate per participant in the walking experiment. A: in-ear type, B: ear-hook type.

results with and without motion component removal for each device. The average recognition
rate improved from 67.2% to 79.6% for in-ear devices and from 48.0% to 58.8% for ear-hook devices
after removing motion components. For in-ear devices, the Shapiro-Wilk test indicated that data
followed a normal distribution without motion component removal (p = 0.266 > .05), but not with
it (p = 0.00585 < .05). Since the F test showed homogeneity of variance (p = 0.164 > .05), a Wilcoxon
signed-rank test was performed, which revealed no significant difference (p = 0.0625 > .05). For
ear-hook devices, the Shapiro-Wilk results showed normality (without/with p = 0.932/0.690 > .05)
and homogeneity of variance (F-test, p = 0.447 > .05). The paired t-test showed no significant
difference between groups (p = 0.230 > .05). However, removing motion components improved
recognition rates by 12.4 points for in-ear and 10.8 points for ear-hook devices. These rates were
lower than in the sitting experiment, likely due to reduced gesture stability from walking. Various
methods [13, 32] have been proposed to eliminate motion noise and prevent recognition perfor-
mance degradation. In future work, we will explore the integration of these methods into our
approach.

5 DISCUSSION, LIMITATIONS, AND FUTURE WORK
5.1 Gesture Elicitation Study

5.1.1 Influence of Familiarity with the Device. Several participants in our study were already
familiar with the tap gesture associated with earphones. In the music player task group, where
many gesture-based operations are common in existing products, many participants preferred
the same gestures. Of the 19 participants, nine had experience with device operations, such as
tapping, and two frequently used these operations. Additionally, many inexperienced participants
also assigned a single tap gesture to the earphones for play/stop tasks, resulting in a very high AR,
especially for play/stop tasks.

Because of the varying implementation of gestures across different earphones and some partici-
pants’ experiences with multiple operations, it was challenging to analyze the influence of past
experience on user-defined gestures strictly. Future research should investigate whether experience
with device operations affects user-defined gestures by comparing groups with and without specific
operational experience.

5.1.2 Influence of Age. For the gesture to answer the phone, many participants in the no-restriction
condition used the phone gesture, which involves bending the index, middle, and ring fingers.
Younger participants often defined this gesture by placing their hand in a phone pose near the ear,
mimicking a smartphone, while older participants tended to mimic turning a dial or picking up an
imaginary receiver as if using a rotary phone. This indicates that user-defined gestures vary with
age, especially in metaphorical gestures. Future work should include experiments with various age
groups to investigate the impact of age on user-defined gestures.

5.1.3  Social Acceptability and Comfort of Ear-based Gestures. A few participants disliked the gesture
of significantly deforming their ears or pushing in the earphones because of social acceptability
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and comfort when wearing the device. We believe that further research is needed to determine how
the severity of the restriction affects social acceptability and comfort when wearing the device.

5.14 Limitations and Future Work. We observed that the shape of the device affected the user-
defined gestures. Beyond the in-ear and ear-hook devices investigated in this study, various other
device configurations exist, including integrated left-and-right types [31] and clip-type devices [3].
By aggregating insights into user-defined gestures across diverse device shapes, we may provide
design guidelines for device forms in the future. To deepen our understanding of our results, it
is essential to compare them not only with the GES but also with the usability or design space
revealed in input studies related to hearables.

5.2 Gesture Recognition

5.2.1 Discussion. The in-ear device demonstrated a commendable recognition rate of 91.0%, af-
firming the feasibility of gesture recognition through IMU technology. By contrast, the ear-hook
devices exhibited a lower recognition rate of 74.7%. This discrepancy can be attributed to the
similarity between several gestures designed for ear-hook devices, specifically the two-directional
pulling gesture for the ear helix and the three-directional pulling gesture for the earlobe, leading to
increased misrecognition rates among these gestures. Roman et al. [16] also reported that when
the helix part is divided into three sections, the touch accuracy of the middle region is low (63%),
indicating that there are issues with the stability of gesture movements around these areas. To
improve gesture recognition accuracy for similar gesture sets, our future endeavors will aim to
elevate the IMU’s sampling rate, capturing more detailed motion data for precise differentiation.
Additionally, we plan to develop a multimodal recognition system that integrates IMU data with
other sensory inputs, such as acoustic signals, to enhance the robustness of gesture recognition
across diverse conditions.

In the GES, the AR was observed to be higher for ear-hook devices, which have a larger device
area. However, this larger device area also introduced a challenge, as users defined similar gestures,
contributing to a lower recognition rate for ear-level gestures. This highlights a finding concerning
the influence of user-defined gestures on the recognition system. Conversely, we anticipate that the
system’s recognition performance will impact usability in real-world scenarios. Moving forward,
we aim to delve into the interplay between these two aspects, gaining insights into user behavior
and refining the system accordingly.

5.2.2 Limitations and Future Work. This study lacks gesture detection experiments. Our future
plans include implementing a gesture detection algorithm and assessing its accuracy during daily
activities such as walking or exercise.

We focused on recognizing ear-level gestures using the IMU sensor. In future works, we will
aim to explore user-defined gestures that can be recognized by other types of sensors, such as
microphones [45] and capacitance sensors [16].

6 CONCLUSION

In our GES, we explored hand inputs for hearables, revealing users’ preferred gestures and variations
in definition tendencies based on interaction area restrictions and device shapes. Subsequently,
we conducted gesture recognition experiments utilizing an IMU for ear-level gestures among the
user-defined gestures identified. The outcomes revealed a recognition rate of 91.0% for nine gesture
types on in-ear devices and 74.7% for six gesture types on ear-hook devices. In the future, we
aim to synergize both studies to deepen our understanding of user behavior and enhance system
performance.
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USER-DEFINED GESTURES

Table 4 and Table 5 list the user-defined gestures for the no restriction and touch conditions,
respectively.

Received February 2024; revised May 2024; accepted June 2024

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. MHCI, Article 258. Publication date: September 2024.


https://doi.org/10.1145/2702123.2702223
https://doi.org/10.1145/3476101
https://doi.org/10.1145/3478085
https://doi.org/10.1145/3636458
https://doi.org/10.1145/2556288.2557239
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/3313831.3376836
https://doi.org/10.1145/3581641.3584062
https://doi.org/10.1145/3332165.3347950
https://doi.org/10.1145/3287076
https://doi.org/10.1145/3544549.3585903

258:22 Yukina Sato et al.
Table 4. User-defined gestures for no restriction conditions.
No Restriction Condition
Task Group Task In-Ear Device [AR] Ear-Hook Device [AR]
Scroll Right Swipe recede in the air [0.36] Swipe recede in the air [0.39]
Scroll Left Swipe approach in the air [0.36]  Swipe approach in the air [0.39]
Scroll Up Swipe up in the air [0.42] Swipe up in the air [0.44]
Scroll Down Swipe down in the air [0.42] Swipe down in the air [0.44]
Zoom In Pinch in in the air [0.22] Pinch in in the air [0.22]
Navigation Zoom Out Pinch out in the air [0.22] Pinch out in the air [0.22]
Maximize Pinch in in the air with all fingers  Pinch in in the air with all fingers
[0.11] [0.11]
Minimize Pinch out in the air with all fin- Pinch out in the air with all fin-
gers [0.11] gers [0.11]

Go to Home Screen

Tap device [0.12]

Tap device [0.15]

Next App Swipe forward in the air [0.14] Swipe forward in the air [0.16]
Previous App Swipe back in the air [0.12] Swipe back in the air [0.13]
Forward Double tap device (right) [0.15] Double tap device (right) [0.19]
Back Double tap device (left) [0.11] Double tap device (left) [0.15]
Play / Stop Tap device [0.40] Tap device [0.54]
Volume Up Swipe up in the air [0.40] Swipe up in the air [0.54]
Music Player  Volume Down Swipe down in the air [0.10] Swipe down in the air [0.13]
Next Song Double tap device (right) [0.23] Double tap device (right) [0.19]
Previous Song Double tap device (left) [0.19] Double tap device (left) [0.16]
Answer Tap device [0.23] Tap device [0.35]
Hang up Tap device [0.19] Tap device [0.29]
Phone Ignore Call Long press device [0.20] Long press device [0.20]
Make a Call Phone sign [0.18] Phone sign [0.18]
Microphone on/ off Double tap device [0.06] Double tap device [0.09]
Speaker on / off Double tap device (left) [0.08] Double tap device (left) [0.08]
Voice Assistant Long press device [0.06] Long press device [0.09]
Voice Memo Put a hand close to a mouth [0.10] Put a hand close to a mouth [0.10]
Application ~ Calendar Draw a rectangle in the air [0.12] Draw a rectangle in the air [0.09]
Health Tracking Pulse-taking hand sign [0.10] Pulse-taking hand sign [0.10]
Notifications Put a hand close to an ear [0.13]  Put a hand close to an ear [0.14]
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Table 5. User-defined gestures for touch conditions.

Touch Condition

Task Group Task In-Ear Device [AR] Ear-Hook Device [AR]
Scroll Right Swipe right cheek [0.18] Swipe right cheek [0.34]
Scroll Left Swipe left cheek [0.17] Swipe left cheek [0.34]
Scroll Up Swipe up cheek [0.14] Swipe up cheek [0.24]
Scroll Down Swipe down cheek [0.14] Swipe down cheek [0.24]
Zoom In Pinch in cheek [0.19] Pinch in cheek [0.26]
Zoom Out Pinch out cheek [0.19] Pinch out cheek [0.26]

Navigation Maximize Pinch in cheek (two times) [0.08] Pinch in cheek (two times) [0.08]
Minimize Pinch out cheek (two times) [0.08] Pinch out cheek (two times) [0.08]
Go to Home Screen  Tap device [0.15] Tap device [0.16]
Next App Swipe down helix [0.15] Double tap device [0.13]
Previous App Swipe up helix [0.13] Double tap device (left) [0.11]
Forward Tap device (right) [0.10] Double tap device (right) [0.17]
Back Tap device (left) [0.08] Double tap device (left) [0.11]
Play Tap device [0.40] Tap device [0.54]
Stop Tap device [0.40] Tap device [0.62]

Music Player  Volume Up Swipe up helix [0.10] Swipe up device [0.18]
Volume Down Swipe down helix [0.11] Swipe down device [0.19]
Next Song Double tap device [0.20] Double tap device [0.17]
Previous Song Double tap device (left) [0.17] Double tap device (left) [0.13]
Answer Tap device [0.27] Tap device [0.39]
Hang up Tap device [0.22] Tap device [0.33]

Phone Ignore Call Long press device (left) [0.18] Long press device (left) [0.18]
Make a Call Long press device [0.10] Long press device [0.10]
Microphone on Double tap device [0.07] Double tap device [0.10]
Microphone off Double tap device [0.06] Double tap device [0.09]
Speaker on Double tap device (left) [0.16] Double tap device (left) [0.14]
Speaker off Double tap device (left) [0.16] Double tap device (left) [0.14]
Voice Assistant Long press device [0.10] Long press device [0.12]
Voice Memo Tap device [0.06] Tap device [0.06]

Application ~ Calendar Swipe up helix [0.09] Swipe down helix [0.08]
Health Tracking put two fingers on neck [0.05] put two fingers on neck [0.05]
Notifications cover ear with hand [0.11] cover ear with hand [0.13]
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